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Visual Context Driven Semantic Priming of Speech
Recognition and Understanding

Deb Roy and Niloy Mukherjee

Abstract— Fuse is a spoken language understanding system
that integrates visual context into early stages of speech recogni-
tion. Given a visual scene and a spoken description, the system
finds the object in the scene that best fits the meaning of the
description. To solve this task, Fuse performs speech recognition
and visually-grounded language understanding. Rather than treat
these two problems separately, knowledge of the visual semantics
of language and the specific contents of the visual scene are
fused into the speech recognition process. The system effectively
anticipates various ways a person might describe any object
in the scene, and uses these predictions to bias the speech
recognizer towards likely sequences of words. A dynamic model
of visual attention is used to focus processing on likely objects
within the scene as spoken utterances are processed. Visual
attention and language prediction reinforce another and converge
on interpretations of incoming speech signals which are most
consistent with visual context. In evaluations, the introduction
of visual context into the speech recognition process results
in significantly improved speech recognition and understanding
accuracy. The underlying principles of this model may be applied
to a wide range of speech understanding problems including
mobile and assistive technologies in which contextual information
can be sensed by the system and semantically interpreted to bias
processing.

I. I NTRODUCTION

Modularity is a central principal in the design of complex
systems, and is often postulated in theories of human cogni-
tion [1], [2]. Modules operate as encapsulated “black boxes”
that can only access other modules through well-defined
interfaces. Access to internal data structures and processing
within modules is privileged. Studies of human behavior,
however, sometimes reveal surprising breaches of modularity.
For example, recent psycholinguistic experiments have shown
that acoustic and syntactic aspects of online spoken language
comprehension are influenced by visual context. During in-
terpretation of speech, partially heard utterances have been
shown to incrementally steer the hearer’s visual attention [3],
and vice versa, visual context has been shown to influence
speech processing [4], [5]. Motivated by these findings, we
have developed a spoken language understanding system in
which visual context primes early stages of speech processing,
resulting in significantly improved speech recognition and
understanding accuracy.

The development of robots provides an exemplery problem
that lends itself to modular design. In practically all robots,
the perceptual, planning, motor control, and speech systems
(if any) operate independently and are integrated through
relatively high level interfaces. In this paper, we consider the
design of a speech understanding system that will eventually

provide speech processing capabilities for an interactive con-
versational robot [6]. A straight forward approach is to take an
off-the-shelf speech recognition system and connect its output
to other modules of the robot. We argue, however, that by
treating the speech recognizer as a black box that is unaware
of the contents of other modules, valuable information is lost.
Since high accuracy speech recognition in natural conditions
remains unattainable, leveraging information from other chan-
nels can be of immense value.

We will consider the problem of understanding spoken
utterances that make reference to objects in a scene. When
an utterance is known to refer to an object in the immediate
environment, the hearer can use knowledge of the shared
environment to anticipate words and phrases that the speaker is
likely to choose. A difficulty in this approach is that there are
typically numerous potential referents in most environments.
The hearer does not know, a priori, which referent the speaker
intends to describe (otherwise there would be no need to listen
to the speech!). Our approach is to jointly infer the most likely
words in the utterance along with the identity of the intended
referent.

This approach has been implemented in an on-line, real-
time, multimodal processing system. Visual scene analysis
reaches into the core of the speech recognition search al-
gorithm and steers search paths towards more likely word
sequences. The semantic content of partially decoded spoken
utterances, in complement, feed back to the visual system
and drive a dynamic model of visual attention. As processing
proceeds, linguistic and visual information mutually reinforce
each other, sharpening both linguistic and visual hypotheses
as sensory evidence accumulates. We show that in contrast to
modular approaches to integration, early integration leads to
substantial improvement in speech recognition accuracy. We
believe that the strategic introduction of cross-module bridges
may be an important design principal in a wide range of
applications beyond the specific system presented.

After providing some background remarks, Section intro-
duces the task we used for our current work on contextualized
speech understanding. This section provides a self-contained
overview of our approach to integration of visual context into
speech recognition. Subsequent chapters provide details on
aspects of this approach, followed by experimental evaluations.

II. BACKGROUND

Integration of spoken and visual input has been investigated
in a wide range of tasks. It is useful to distinguish two broad
classes of tasks. LetS and V denote the speech and visual
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input signals, respectively. The speech signal’s primary role
is to encode sequences of words. Prosodic aspects of speech
also encode affective, syntactic, and stress information. All
information in S convey the speaker’s intent. In contrast,V
may carry two distinct kinds of information, depending on
the task. Consider first the problem of audiovisual lipreading.
In this task, visual input typically consists of images of the
speaker’s lips as they speak. In this case, the basic kind of
information carried inV is the same asS: words. The visual
channel provides complimentary or redundant aspects of the
surface form of words. This complementarity of encodings of
word surface forms can be leveraged to increase recognition
accuracy. For lipreading, we can say thatV = Vi, where i
reminds us that the purpose of the visual channel is toindicate.
The lips are part of the speakers way of conveying his/her
intention. A related problem that has received significant
attention is the integration of speech with visually observed
gestures made either by hand or using a mouse. Although hand
gestures are very different in nature from the motion of lips,
broadly speaking, both belong to the same class ofV = Vi

since gestures also play the role of indicating the speaker’s
intentions.

In contrast, consider the problem of building a speech under-
standing system for robot in which the visual input comes from
a camera mounted in the robot, looking out into the robot’s
environment. The speaker asks the robot to pick up a red block.
The visual channel might capture the speaker, complete with
lip movements and other body gestures. However, the visual
signal will also contain information about the robot’scontext,
which in this case may include a red block. We indicate this
kind of visual information by sayingV = Vi + Vc whereVc

denotes contextual information captured in the visual signal.
If the speaker is not in view, thenV = Vc. The contents of
Vc are fundamentally different fromVi sinceS may beabout
aspects ofVc but notVi

1.
The focus of this paper is for a task in whichV = Vc,

i.e, the visual input contains purely contextual information. In
contrast to lipreading and gesture understanding problems, we
will instead investigate the semantic referential content of the
visual signal and how it can be integrated withS in useful
ways for a real-time multimodal understanding system.

Most previous work on integrating visual context with
speech / language understanding involves modular, late inte-
gration. SAM (speech activated manipulator) [7] is a robotic
system with sensory capabilities that interacts with a hu-
man conversation partner through spoken language dialog.
Speech recognition and visual analysis are integrated at a
relatively late stage through an augmented transition network
that operates on a frame-based knowledge representation.
Crangle and Suppes [8] have proposed an approach to verbal
interaction with an instructable robot based on a unification
grammar formalism. They have examined the use of explicit
verbal instructions to teach robots new procedures and have
also studied ways a robot could learn from corrective user

1One can imagine rare exceptions to this. A person, while waving their arm
in a strange gesture, might say, “It hurts when I dothis”, where, “this” refers
to the gesture. This is harder to do with lips, and for our current purposes,
we set these exceptions aside.

commands containing qualitative spatial expressions. Although
speech may provide linguistic input to their framework, there
is no mechanism for propagating semantic information to
early speech processing due to the modular design of their
model. Wachsmuth and Sagerer (2002) presents a probabilistic
decoding scheme that takes the speech signal and an image
or image sequence as input. The speech signal is decoded
independent of the decoding of the image data. A Bayesian
network integrates speech and image representations to gen-
erate a representation of the speaker’s intention. In summary,
each of these systems integrates spoken language with visual
context, but the conversion of speech to text occurs in a
contextual vacuum. In contrast, we have explored one way
to push context into speech recognition.

In our own previous work [9], we have developed a trainable
spoken language understanding system that selects individual
objects on a table top based on referring spoken language
expressions. The system uses speech recognition output and
image representations generated by a visual analysis module
to robustly parse the speech in real time and points to an object
that best fits the description. In contrast to these previous
works, the approach presented here demonstrates integration
of visual context into core of the speech recognition search
process, a process that is treated as modular and isolated
from visual influence in previous work. To make the early
link between visual context and speech, we rely on visually-
grounded models of word semantics that we developed in
a previous system [10]. For other approaches to visually-
grounding word meaning, see also [11]–[16].

III. OVERVIEW

To study the role of visual context in spoken language
comprehension, we developed a simple scene description task.
Participants in a data collection study were asked to verbally
describe objects in scenes consisting of oversized lego blocks
(Figure 1). No restrictions were placed on the vocabulary,
style, or length of description. Typical descriptions ranged
from simple phrases such as, “The green one in front” to more
complex referential utterances such as, “The large green block
beneath the smaller red and yellow ones”. The result of this
data collection was a set of images and spoken descriptions to
objects in the images. We addressed the problem of visually-
grounded speech understanding: given a spoken description,
find the object in the scene that best fits the description.

In a modular approach, speech recognition and visual
analysis would be performed separately and combined by an
integrator that does not affect the internal operations of earlier
stages of processing. In previous work, we have followed this
modular approach [9], as have others (cf. [7], [17]).

In this section, we provide an overview of an alternate
approach in which the core speech recognition process is
altered by knowledge of visual context.

A. The Role of Language Modeling in Speech Recognition

Speech recognition is most commonly formulated in a max-
imum likelihood framework [18]. Given an observed spoken
utterance,X, we wish to choose a word strinĝW
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Fig. 1. A typical visual scene in the current experimental task.

Ŵ =
argmax
W P (X|W )P (W ) (1)

The termsP (X|W ) and P (W ) correspond to an acous-
tic model and language model, respectively. In conventional
speech recognition systems, the acoustic model captures the
acoustic properties of speech and provides the probability of
speech observation given hypothesized word sequences. In
audio-visual speech recognition systems, speech observations
include both acoustic and visual information. The acoustic
model that providesP (X|W ) is generalized to also model
visual information. Referring to our discussion in Section II,
this is an instance of usingVi, visual information that conveys
the speaker’s intent.

The language model,P (W ), provides probabilities of word
stringsW based oncontext. In practically all speech recog-
nition systems, this context is a function of the history of
words that the speaker has uttered. In contrast, our approach
to visual integration is to dynamically modifyP (W ) on the
basis of visual context (Vc). By doing so, the search process
which is central to speech recognition is influenced by visual
context. This cross-modal coupling provides an example of
early cross-modal integration. In contrast to late integration,
early integration effectively reaches into the speech decoder
and effects how the decoder interprets acoustic speech signals.

Since our focus will be on dynamic language models, we
provide a brief overview of the most widely used statistical
language model, known as then-gram which will serve as
a basis for our cross-modal extension. The n-gram model
assigns probabilities to hypothesized word sequences. The
model implicitly captures syntactic, semantic, and contex-
tual knowledge. The probability of a word sequenceW =
w1, w2, . . . , wk which we denote aswk

1 , can be expressed as
a product of conditional probabilities:

P (wk
1 ) = P (w1)P (w2|w1) · · ·P (wk|wk−1

1 ) (2)

In theP (wk|wk−1
1 ), wk−1

1 is called the history andwk the
prediction. In the n-gram approach, two histories are treated as
identical when they end in the samen−1 words. For example,
with n = 2, we obtain a bigram language model:

P (wk
1 ) = P (w1)P (w2|w1) · · ·P (wk|wk−1) (3)

Many extensions to basic n-gram language models have
been proposed such as variable length histories [19], long
distance dependencies [20] (for a review, see [21]). Stochastic
context-free grammars provide an alternative to n-grams that
does not make Markov assumptions [22]. Our goal is to
introduce a form of visually-driven semantic priming into the
statistical language model of a real-time speech recognizer.
In principal, any of the n-gram extensions mentioned above
can be augmented with visual context in the way that we
propose. For simplicity, we have chosen to work with the
bigram language model which has sufficient modeling power
for the present scene description task.

The parameters of a bigram model are usually estimated
from a large text corpus. Given a training corpus of sizeT
words in which wordw occurs|w| times, the maximum like-
lihood estimate ofP (w) is |w|/T . The maximum likelihood
estimates for the conditional termsP (wi|wi−1) are given by
|wi−1, wi|/|wi| where |wi−1, wi| is the number of times the
sequencewi−1, wi occurs in the training corpus.

Words may be clustered into equivalence classes leading
to n-gram class models [23]. For example, if the distribution
of words in the neighborhood ofMonday and Tuesdayare
believed to be similar, the words can be clustered, and treated
as equivalent for language modeling. The principal benefit of
creating word classes is that we are able to make better use of
limited training data to make predictions for word histories that
are not encountered in training. We can partition a vocabulary
into word classes using a function which maps each wordwi

to its corresponding classc(wi). For bigram class models,

P (wi|wi−1) = P (wi|c(wi))P (ci|ci−1) (4)

Standard word bigrams are a special case of bigram class
models in which each word is mapped into its own unique
word class.

B. Visual-Context Sensitive Language Models

Figure 2 provides an overview of our approach to integrating
visual context with speech recognition and understanding in
a model called Fuse. The remainder of this section sketches
the main ideas underlying the approach. Following sections
provide details of implementation and evaluation.

As shown in Figure 2, input to Fuse consists of a speech
signal and an image. Figure 1 is representative of images in
the current task, captured by a color video camera. The speech
signal is recorded from a head-worn microphone. The spoken
utterances used for evaluations consisted of naturally spoken,
fluent speech.

The visual scene analysis module detects objects in the
scene and extracts a set of visual features that represent indi-
vidual objects, and inter-object spatial relations. The results of
the scene analysis are accessible by two modules: a language
model, and a visual attention model. As the speech signal
is processed, both the language and attention models are
dynamically updated. Working together, the models steer the
interpretation of the speech signal based on visual context.

To understand the main processing loop in Figure 2 and the
role of the language model and visual attention model, we will
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Fig. 2. Overview of the Fuse architecture.

work through a simple example. Let us consider a situation in
which a speaker says, “The red block on the left” in the context
of a scene containing four blocks: a red one and a blue one on
the left, and a red one and blue one on the right. For a moment,
let us ignore the dynamic language model connected to the
speech recognizer, and instead assume a standard static bigram
language model. As the first portion of the input utterance is
processed, let us further assume that the speech recognizer
correctly recovers the first two words of the utterance, “the
red”. In actuality, the output of the speech recognizer will be
a lattice that encodes multiple word hypotheses, but to keep
the example simple, we only consider a single word sequence.

The partially decoded word sequence is fed to the visual
attention module which also receives the output of the visual
scene analyzer. Visual attention is modeled as a probability
mass function (pmf) over the set of objects in the scene.
Initially, before speech recognition begins, the pmf is non-
informative and associates equal probability to all objects in
the scene. When the words “the red” are fed into the visual
attention module, the pmf is updated so that most of the
probability mass is shifted to the red objects in the scene.
In effect, the visual attention of the system shifts to the red
objects. The attention module uses a set of visually-grounded
semantic models to convert the word sequence into the pmf
(Section VI).

The visual attention pmf, which now favors the two red
objects in the scene, is transmitted to the language model. The
language model may be thought of as a linguistic description
generator. For each object in the scene, the model generates a
set of referring expressions that a person might use to describe
the object. For the red block on the left, the model might
generate a set of descriptions including “the red block”, “the
large red block”, the “the red block on the left”, and so
forth. Each description is assigned a likelihood that depends
on how well the description matches the visual attributes
of the object, but also based on syntactic and contextual
factors. The likelihoods of the descriptions for each object
are multiplied by the probability assigned to that object by

the visual attention pmf. The resulting mixture of descriptions
is converted into a statistical language model which is used
by the speech recognizer. In effect, visual attention steers the
speech recognizer to interpret the input speech signal as a
description of objects that have captured more of the system’s
attention.

To summarize, as acoustic evidence is incrementally pro-
cessed, the visual attention pmf evolves. The dynamic pmf
in turn biases the language model of the speech recognizer.
As more of the utterance is processed, the visual attention
becomes progressively sharpened towards potential referents
in the scene.

Several details have been simplified in this overview. One
complication is introduced with utterances with relative spatial
clauses such as, “The red block to the left of the large blue
one”. In this class of utterances, the visual attention must be
reset mid-way through processing to refocused from one object
to another. Another complication arises from the fact that the
output of the speech recognizer at any moment is not a single
word sequence, but rather a lattice that encodes multiple (po-
tentially thousands) of alternative word hypotheses. These and
other aspects of Fuse are explained in the following sections
which provide detailed descriptions of each component of the
system.

IV. V ISUAL SCENE ANALYSIS

The visual scene analysis module segments objects in an
input scene and computes visual properties of individual
objects, and spatial relations between pairs of objects. The
resulting representation of the scene is used by both the
language model and visual attention model.

Objects are segmented based on color. A simple statistical
color model is created objects by training Gaussian mixture
models on sample images of the objects. We assume that
objects will be single-colored, greatly simplifying the segmen-
tation process. The Expectation Maximization (EM) algorithm
is used to estimate both the mixture weights and the underlying
Gaussian parameters for each color model. The color models
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are used as a Bayes classifier to label each 5x5 pixel region
of an input region. Regions of the image that do not match
any object color model are classified as background using
a fixed threshold. Objects are found by extracting connected
foreground regions of consistent color.

A set of visual properties are computed for each object
found in the segmentation step, and for spatial relations
between each pair of objects. These properties and relations
constitute the complete representation of a visual scene. The
features attempt to capture aspects of the scene that are likely
to be referred to in natural spoken descriptions. The following
visual features are extracted:

• Color is represented by the mean RGB value of the 10x10
pixel region in the center of the object.

• Shapeis represented by five geometric features computed
on the bounding box of each object: height, width, height-
to-width ratio, ratio of the larger to the smaller dimension
(height / width), and bounding box area [10].

• Position is represented by the horizontal and vertical
position of the of center of the region.

• Spatial relations are encoded by a set of three spatial
features suggested in [12] that are measured between
pairs of objects. The first feature is the angle (relative
to the horizon) of the line connecting the centers of
area of an object pair. The second feature is the shortest
distance between the edges of the objects. The third
feature measures the angle (relative to the horizon) of
the line which connects the two most proximal points of
the objects.

To summarize, each object is represented by a ten-
dimensional feature vector (3 color features, 5 shape, and 2
position). The spatial relation between each pair of objects
is represented by 3 additional spatial features. In real time
operation, the visual analysis system captures and processes
video frames at a rate of 15Hz. When Fuse detects the onset
of a spoken utterances, the visual frame co-occurring with the
start of the utterance is captured, and the results visual features
are used to provide context for processing of the entire spoken
utterance (changes made to the scene once the utterance has
begun are ignored).

V. SPEECHDECODING

The role of the speech decoder is to find word sequences
that best explain acoustic input. Since the main contribution
of the Fuse architecture lies in the treatment of language mod-
eling, this section briefly summarizes the speech decoder. The
decoding strategy and algorithms are all based on previously
published work. The decoder has been tested on standard
speech recognition test corpora and performs competitively
with other research platforms, and thus serves as a useful
baseline for the experiments presented here.

Speech is represented using a 24-band Mel-scaled cepstral
acoustic representation [24]. Words are modeled by concate-
nating context sensitive phoneme (triphone) models based on
continuous-density three-state, Hidden Markov Models [25].
Speech decoding is accomplished using a time-synchronous
Viterbi beam search [25].

VI. V ISUAL CONTEXT DRIVEN LANGUAGE MODEL

The language model is designed to “second guess” what
the speaker is likely to say, assuming he/she will speak a
description of an object in the current visual scene. If the
language model is able to accurately anticipate the speaker’s
words, the model can bias the speech decoder towards more
likely interpretations of the incoming speech signal. There are
several sources of uncertainty in predicting how a person will
describe objects in the scene:

1) The identity of the target item is unknown, so the
language model must consider descriptions that fit all
objects in the scene.

2) People may use different words to refer to the same
attributes. For example, one person might call an object
blue, while another speaker will call it purple.

3) Speakers may use different combinations of words to
refer to the same object; “the blue one”, the “the tall
block”, and “the cube to the left of the red one” may all
refer to the same referent.

To address the first sources of uncertainty, descriptions are
generated, in turn, for each object in the current scene. For
each object, multiple descriptions are generated to account
for variations due to factors (2) and (3). The potentially large
set of resulting descriptions are then weighted and combined
to create an n-gram language model that is used by the
speech decoder. Although the descriptions stay fixed during the
processing of an utterance, the relative weighting of individual
descriptions is dynamically updated using the visual attention
model that is described in Section VII. As a result, the n-
gram language model is not only influenced by visual context
as recorded at the onset of the utterance, but further evolves
online as the utterance is processed.

The method for generating descriptions is adapted from the
trainable object description system described in [10]. In this
previous work, we developed learning algorithms that take
as input synthetic visual scenes paired with natural language
descriptions of objects. The trained description system consists
of a set of visually-grounded word models that are grouped
into word classes. A two-layer stochastic finite state machine
(SFSM) organizes the word classes into a structured graph.
Any path through the SFSM generates a sequence of word
classes. By selecting a single word from each word class
(using the visual models linked to each word), the word class
sequence is converted into a word sequence that constitutes
a description of an object. Although the original system
was designed to operate with synthetic images, transfer of
the algorithms to the current constrained visual task was
straightforward since similar features are extracted from the
camera-based images as were from the synthetic images.

A. The Description Model

At the heart of the description model is a set ofvisually-
grounded word models. Each word model consists of a phone-
mic transcription paired with a statistical model that represents
the visual semantics associated with the word. The phonemic
transcriptions are used by the speech decoder for acoustic
matching with the speech signal. A visual model consists of a
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Fig. 3. Example of a word class with four members. Each ellipse indicates
an equal probability density contour associated with a visual model (a full-
covariance Gaussian distribution), centered on its mean which is indicated
with a small asterisk. An automatic feature selection algorithm determined
the two visual features used for defining this set of four words.

multidimensional Gaussian distribution defined over a subset
of the 10 visual features described in Section refsec:vision.
Grounded words are clustered into word classes based on
semantic and syntactic relatedness. A two-layer stochastic
finite state machine (SFSM) models word order.

All parameters of the description model are learned from
examples of objects embedded in scenes that are labeled
with descriptive phrases. A set of 60 training examples were
collected from eight participants, resulting in a total of 480
examples in the training dataset.

Learning algorithms that we have previously developed
[10] were used to train all components of the model. Since
the training methods have been previously described, we
summarize the contents of the trained model and how the
model is used to generate descriptions.

Figure 3 shows the visual models associated with the
members of a word class in Fuse. The figure shows that
two geometric features (area, and ratio of dimensions) have
been selected as the defining visual attributes for this cluster
of words. The overlapping distributions show the relation
between the wordsbig and large, and the near-antonymslittle
andsmall. As we shall see, word classes and their associated
visual models are used as Bayes classifiers in order to generate
labels for novel objects.

Word order is modeled through bigrams that specify tran-
sition probabilities between words and word classes. Figure
4 shows a subset of phrase level bigrams in the form of
a transition network. Each arc is labeled with the transition
probability between the connected words / word classes. Any
path through this network constitutes a possible description of
an object. For instance,the red blockandthe leftmost large one
are word sequences that may be generated by this network. A

higher-order phrase network (Figure 5) models relative spatial
phrases. The phrase nodes in this network each embed a copy
of the phrase network and are connected by relative spatial
terms. This phrase network can generate sequences such as
the large green block beneath the red one.

B. Mixtures of Descriptions for Language Modeling

In our implementation, the speech recognizer requires a
language model consisting of a set of word bigram transition
probabilities. As Equation 4 shows, the word bigram can be
obtained from the product of word class transition probabilities
P (ci|ci−1) and class conditional word probabilitiesP (wi|ci).
The word class transition probabilities are fully determined
from training data (Figure reffig:fsm1) and remain static during
speech processing. Thus, the expected order of word classes,
and transition probabilities between classes is not expected to
change as a function of visual context. The probabilities of
words within each word class, on the other hand, do depend
on context. As a simple example, if there are no blue objects in
the scene, the probability for the word blue should be reduced
relative to other words in its class. To capture this intuition,
class conditional word probabilities are dynamically estimated
as a function of the scene and visual attention using a six step
process:

1) Enumerate all left-to-right paths through grammar
All distinct paths connecting thestart and end nodes
of the transition network are enumerated. Loops are
avoided, resulting in only left-to-right paths. This pro-
cess leads to a set ofN sequences,{C1, C2, . . . , CN}.
Each sequenceCi consist of a ordered set ofTi word
classes:

Ci = c1i , c
2
i , . . . , c

Ti
i (5)

These sequences constitute the set of syntactic frames
embedded in the transition network.

2) Map word classes to words
Each grounded word class is visually grounded in a set
of visual models, one model associated with each word
in the class. These models can be treated as a standard
Bayes classifier [26] to classify objects based on their
measured visual attributes. For example, consider the
word class shown in Figure 3. To use this word class as a
Bayes classifier to label an object, the two features of the
object associated with visual models must be measured.
Each of the visual models are then evaluated at the
measured values, and the model with the highest value
(probability density) is selected as the best match to
the object. The word associated with that model is thus
the best choice within the word class for describing the
object. The mapping from word class to word is object
dependent; different words may become most activated
within a class depending on the visual properties of the
object. We denote the word sequence generated by using
the word class sequenceCi to describe objectOj as:

W j
i = w1

ij , w
2
ij , . . . , w

Ti
ij (6)
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Fig. 4. The probabilistic grammar used to generate descriptions of objects. Nodes include individual ungrounded words and grounded word classes. To allow
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For a scene withM objects, this mapping process results
in N ×M word sequences (N descriptions for each of
M objects).

3) For each description, compute its descriptive fitness
Each description can be evaluated for how well it visu-
ally matches its target object by computing the product
of the word conditional probabilities of the observed
object properties, which is equivalently expressed as a
sum of log probabilities:

fit(W j
i , Oj) =

ΣTi
t=1 log p(Oj |wt

ij)
G(Ci)

(7)

WhereG(Ci) is the number of visually grounded word
classes in the sequenceCi, andp(Oj |wt

ij)) evaluated the
visual model associated with wordwt

ij for the visual fea-
tures of objectOj . For ungrounded words,p(Oj |wt

ij))
is set to 1.0. The denominator term normalizes effects
due to the length of the description.
The fitness function measures how well a descriptive
phrase matches the properties of the target object, but
it does not account for contextual effects due to other
objects in the scene. For example, a description that
matches the target well may also describe a non-target
equally well. To capture contextual effects, we define a
context-sensitive fitness, which is assigned to the source
word class sequence:

ψ(Ci, Oj) = fit(W j
i , Oj)−maxk 6=jfit(W

j
i , Ok) (8)

4) Compute object-conditional word predictions

For a given object and word class sequence, object
conditional probabilities are assigned to each visually
grounded word:

P (w|Oi, c(w)) =
p(Oi|w)

∑
Cj ,wεCj

ψ(Cj , Oi)∑M
k=1 p(Ok|w)

∑
Cj ,wεCj

ψ(Cj , Ok)
(9)

Where c(w) is the word class to whichw belongs.
The context-sensitive fitness scoresψ(Cj , Oi) scale each
visually based probability densityp(Oi|w) depending
on how well the overall syntactic frameCj is able to
generate an unambiguous description ofOi.

5) Mix word predictions using visual attention
The final step is to mix the influences of all objects in
the scene:

P (w|c(w)) =
M∑
i=1

P (w|Oi, c(w))P (Oi) (10)

Relative emphasis of objects is controlled by Fuse’s
visual attention state,P (Oi), described in the next
section.

Using these five steps, a set of class conditional word prob-
abilities are generated that represent the system’s anticipation
of words the speaker will use, given the contents of the visual
scene, and the system’s current visual attention state. Referring
back to Equation 4, we can see that the dynamic formulation of
class conditional probability estimatesP (w|c(w)) in Equation
10 can be directly inserted into the computation of bigrams
that feed into the speech recognizer. As certain objects in the
scene capture more of Fuse’s attention, the words that better
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Start
TARGET
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1.00
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behind

0.17
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0.14
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0.04

under

0.06
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0.04
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1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

End
1.00
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right of

1.00

Fig. 5. The probabilistic grammar used to generate descriptions with relative
spatial clauses.

describe those objects become more probable and thus steer
the speech recognizer towards those parts of the vocabulary.
The expectedorder of words as specified by the bigram class
probability transitions remains static throughout this process.

C. Relative Spatial Clauses

Phrase bigrams are used to model the use of relative
spatial clauses. For example, “The red block beneath the
small green one” contains references two objects, the target
and alandmark (“the small green one”). The spatial relation
“beneath” describes the relation between target and landmark.
The class bigram network is augmented with spatial relation
terms as shown in Figure 5.

Spatial connective terms may consist of multiple words
(e.g., “to the left of”) but are tokenized and treated as a
single acoustic unit during speech decoding. Each spatial term
is grounded in a Guassian model that is defined over the
spatial features described in Section IV. To combine the spatial
grammar (Figure 5) with the simpler single-object descrip-
tion grammar (Figure 4), an additional transition probability
is needed: the probability that a description will contain a
relative spatial phrase. This is estimated based on frequency
of occurrence of relative phrases in the training data.

VII. L ANGUAGE DRIVEN V ISUAL ATTENTION

As Fuse processes incoming speech and generates partial
word sequences, a model of visual attention is incrementally
updated to reflect the system’s current belief of the intended
referent object. Attention consists of a probability mass func-
tion (pmf) spread over the objects in the scene. This pmf
is used to mix object-dependent description bigrams into a
single weighted bigram. Thus, as speech is processed, the
evolving distribution of attention shifts the weight of bigrams
to favor descriptions of objects that hold more attention.
The Visual Attention model enables the early integration of
visual context to provide dynamic incremental estimation of
the priors associated with the interpolated class conditional
probabilities. In other words, the model uses the visual context
to immediately determine the attention distribution spread over
the objects in the current scene.

The speech decoder used in Fuse is based on a single
pass Viterbi beam search [25]. In this strategy, multiple word
sequences are considered during a forward pass, and in a back-
ward pass the best word sequence is selected. In the following,
we show how the visual attention model,P (Oi), is computed
for a partial word sequence. Separate attentional pmf’s are
maintained for each parallel word sequence hypothesis. The
average pmf over all search paths of the decoder may be
interpreted as the system’s overall attention at any given point
of time.

At the start of each utterance, before any words have been
processed, visual attention is shared equally by allM objects
in the scene:

P (Oi)[0] =
1
M

(11)

The index marks that the this is the pmf when 0 words have
been processed. As each new wordwn posited in one of
the search paths of the speech decoder, the path-dependent
attention pmf is incrementally updated using one of three
update rules depending on the new word:

1) wn is a visually-grounded word (e.g., “large”, “blue”,
etc.). In this case, the update rule is:

P (Oi)[n] =
p(Oi|wn)P (Oi)[n− 1]∑M

j=1 p(Oj |wn)P (Oj)[n− 1]
(12)

As a result of this udpate rule, the visual models
corresponding to modifier terms of a single object are
multiplied.

2) wn is a visually-grounded spatial relation (e.g., “above”,
”beneath”, etc.). The update rule is:

P (Oi)[n] =

∑M
j=1,j 6=i p(Oi|wn, Oj)P (Oj)[n− 1]∑M

k=1

∑M
j=1,j 6=k p(Ok|wn, Oj)P (Oj)[n− 1]

(13)
where P (Oj |w,Oi) is derived from visual models of
spatial relations
in which Oi is the target object andw is the relative
spatial term. This update rule causes the attention of the
system to shift to objects that hold the spatial relation
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indicated bywn relative to whatever object has been
described by the partial word sequencew1 . . . wn−1.

3) wn is a visually ungrounded word (e.g., “the”, ”by”,
etc.). The update rule is:

P (Oi)[n] = γP (Oi)[n− 1] (14)

where γ is a constant likelihood assigned to all un-
grounded words. Visually grounded words thus have no
effect on visual attention.

Using these three update rules, Fuse maintains separate
attentional state pmf’s for each search path of the decoder.

VIII. V ISUALLY-GROUNDED SPEECHRECOGNITION AND

UNDERSTANDING

Processing in Fuse is initiated by the detection of a spoken
utterance. A forward pass maintains multiple word sequence
hypotheses in a search trellis. Following standard speech
recognition practice, a beam is used to limit the number of ac-
tive paths at any point in the forward pass. The visual attention
model biases the search to word sequences that semantically
match the properties and spatial configurations of objects in the
co-occurring visual scene. Once the entire utterance has been
processed (i.e., the forward pass is complete), the backchaining
is used to recover the most likely word sequence.

Fuse is able to understand two classes of referring expres-
sions which we refer to as simple and complex [10]. Simple
expressions refer to single objects without use of spatial rela-
tions, and are fully modeled by the transition network shown in
Figure 4. Complex expressions include relative spatial clauses
and are modeled by the network shown in Figure 5.

Once the forward pass of the Viterbi beam search is
complete, the best word sequence is extracted using dynamic
programming [25]. We denote this word string asW =
w1 . . . wN . In the case of a simple referring expression, Fuse
selects the object with greatest visual attention:

argmax
i P (Oi)[N ] (15)

For complex referring expressions, we can segmentW into
three sub-sequences,W = w1 . . . wm−1, wm, wm+1 . . . wN

wherewm is a relative spatial term,w1 . . . wm−1 describes the
target object, andwm+1 . . . wN describes a landmark object.
Fuse selectsOi based on:

argmax
i P (Oi)[m− 1]

M∑
j=1,j 6=i

p(Oj |wm, Oi)P (Oj)[N ] (16)

wherep(Oj |wm, Oi) is derived from the visual model associ-
ated with the relative spatial termwm.

A. A Detailed Example of Visually-Steered Speech Processing

To make the interaction between visual attention and speech
processing more concrete, we take a closer look at an example.
Table I shows the transcription of a sample utterance, the
output of the speech decoder using standard bigrams without

use of the visual attention model, and the decoder’s output
using visual attention.

Errors from the decoder are underlined, and omitted words
are indicated by square parentheses. Corrections due to visual
context are shown in italics. The introduction of visual context
in this case makes two important differences. First, the word
lower is corrected tolarge, and the incorrectly decoded words
to meare changed tobeneath.

The evolution of visual attention is illustrated for this
example in Figure 6. Each plot shows the spread of attention
across the ten objects after integrating the words shown to the
left of that plot. The word sequence that was selected as most
probably during the backward pass of the decoder is shown.
Ungrounded words are shown in parentheses and do not effect
the attention pmf. Attention vectors are normalized within
each plot so only relative values with plots are significant. As
evidence for the target object accumulate from the first part
of the utterance, “The large green block in the far right”, the
pmf becomes progressively sharper with most probability mass
focused on Object 8. When the relative spatial term “beneath”
is incorporated, visual attention is captured almost equally by
Objects 9 and 10 which are the two smaller blocks above
Object 8. Thus, the grounded model associated with “beneath”
has caused attention to shift appropriately. The remainder of
this utterance refers to two objects. Fuse is designed on the
assumption that the remaining phrase will refer to only a single
object. Due to the soft assignment of visual attention, however,
Fuse is able to robustly deal with the phrase “the yellow block
and the red block” by assigning roughly equal attention to both
landmark objects. When Equation 16 is applied to example,
the correct object (Object 8) is selected by Fuse.

B. Experimental Evaluation

A corpus of 990 utterances paired with corresponding visual
camera images was collected from eight speakers. Each utter-
ance describes one object in a scene containing ten objects.
To evaluate Fuse, we used a leave-one-speaker-out train and
test procedure. For each speaker, their data was held out and
the remaining data was used to train word class bigrams.

Speech recognition and understanding errors are shown
in Tables II and III, respectively. Speech recognition errors
are measured using the standard NIST measurement package
[] which aligns decoder output with transcripts with equal
penalty for word insertions, deletions, and substitutions. Aver-
aged across all eight speakers, the word recognition error rate
is reduced by 31% when visual context is used. This result
shows that early integration of visual context has significant
impact on the recognition of speech that refers to the contents
of the scene.

The effects of visual context on speech understanding are
even more significant. Since each visual scene had 10 objects,
random selection would lead to an average error rate of 90%.
The first column of Table III shows that even without visual
context, i.e., using a standard speech recognizer, the system
works quite well, with an average error rate of 24% (i.e., the
system chooses the correct object 76% of the time). This
system is similar to that described previously in [9]. The
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Transcript The large green block on the far right beneath
the yellow block and the red block.

No visual context [The] lower green block inthe far right to me
[the] yellow block in the red block

Visual context The large green block inthe far rightbeneath
the yellow block inthe red block

TABLE I

A EXAMPLE OF SPEECH TRANSCRIPTION WITHOUT THE USE OF VISUAL CONTEXT, AND IMPROVED OUTPUT FROMFUSE WITH VISUAL CONTEXT.

DELETION ERRORS ARE MARKED IN SQUARE PARENTHESES AND SUBSTITUTION ERRORS ARE UNDERLINED.

the

large

green

(block in the far)
right

(the)
yellow
(block in)

red
(block)

beneath

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

1
green

   2
red

    3
yellow

10
yellow

4 yellow

5 red 6 red
7 green

8 green

9 red

Fig. 6. Evolution of attention during processing of the utterance, “The large green block in the far right beneath the yellow block and the red block”.

second column of Table III shows the change in understanding
errors once visual attention is integrated into the speech
decoding process. On average, the number of understanding
errors drops by 41%, so that Fuse chooses the correct object
86% of the time. Thus, the early influences of vision on speech
processing flow through the system and have substantial effects
on overall understanding performance.

C. Analysis of Errors: Suggestions for Future Directions

We have observed five significant causes if speech under-
standing errors, each of which suggests extensions to the
current Fuse architecture:

• Speech end point detection errors: The speech segmenta-
tion module in our real time speech recognition system

occasionally merges utterances that should have been
processed separately. Later stages of Fuse are designed
on the assumption that only one referring expression is
contained in the utterance. A possible extension is to
integrate speech segmentation with semantic analysis.

• Descriptions with more than one landmark object: We
assume that a complex referring expression consists of
a target object description, and optionally a landmark
object description with connective relative spatial term
or phrase. Thus, Fuse cannot always handle cases where
the referring expressions contain descriptions of more
than one landmark objects in conjunction or groups of
landmark objects (although the example in Section VIII-
A demonstrates that sometimes this problem can be over-
come in the current approach). This shortcoming suggests
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Speaker No Visual Context With Visual Context
1 28.2 21.7
2 24.6 14.3
3 26.9 17.2
4 23.7 16.6
5 19.2 14.5
6 21.3 13.3
7 24.3 17.1
8 26.0 18.8

Ave 24.3 16.7

TABLE II

SPEECH RECOGNITION WORD ERROR RATES(%). AVERAGED ACROSS ALL

EIGHT SPEAKERS, THE INTRODUCTION OF VISUAL CONTEXT REDUCED

THE WORD ERROR RATE BY31%.

Speaker No Visual Context With Visual Context
1 27.4 17.6
2 25.5 12.1
3 27.8 14.8
4 23.3 17.0
5 23.0 13.2
6 23.5 13.9
7 23.8 13.1
8 21.2 12.6

Ave 24.4 14.3

TABLE III

SPEECH UNDERSTANDING ACCURACY RESULTS(%). AVERAGED ACROSS

ALL EIGHT SPEAKERS, THE EARLY INTEGRATION OF VISUAL CONTEXT

REDUCED THE LANGUAGE UNDERSTANDING ERROR RATE BY41%.

the use of more complex grammars, and treatment of
semantic composition that goes beyond the multiplication
of probability densities. For some steps in this direction,
see [27].

• Error Propagation: Due to the feed-forward design of the
visual attention update algorithm, errors that creep in dur-
ing initial stages of decoding are propagated throughout
the entire utterance. To remedy this, and other related
problems, the notion of confidence might be introduced
to the visual attention model. For example, the number
of active search paths within the Viterbi beam search,
which is often used as a source for estimating acoustic
confidence in speech recognizers [28], might similarly be
used as the basis for estimating confidence of the visual
attention pmf. When confidence is low, the effects of
attention could be discounted.

• Visual Segmentation Errors: Some errors in understand-
ing occur due to imperfect image segmentation performed
by the visual analysis system. Such segmentations may
merge more than one objects or divide an object into
two or more parts. These cause mismatches among de-
scriptions and the corresponding objects. This problem
suggests early integration of speech into visual process-
ing, the complement of the integration we have explored
in Fuse. Referring back to Figure 2, this suggests that the
visual scene analysis module might be brought into the
processing loop. If the speech decoder confidently reports
the phrase “the two blue blocks on the right”, this might
help the visual analyzer decide between interpreting a

stack of blocks as a single block versus two.
• Visual-Semantics Acquisition: Some errors are due to

poor visually-grounded models that did not generalize to
test data. A simple fix might be to collect more training
data. In the long term, we believe that robust visual
models must be dynamic to account for context-sensitive
shifts of word usage, as well as speaker-dependent shifts
of word usage. We are currently investigating dynamic
grounded models to address this issue.

IX. CONCLUSIONS ANDFUTURE DIRECTIONS

We have presented an implemented model that integrates
visual context into the speech recognition and understanding
process. In contrast to previous work, Fuse makes use of
context at the earliest stages of speech processing, resulting in
improved performance in an object selection task. The main
idea that this work demonstrates is the payoff of strategically
breaking modular boundaries in language processing. A key
to achieving this cross-module integration is a model of how
natural language semantics relates to visual features of a scene.

Looking ahead, we plan to expand this work along two
directions. First, Fuse will be integrated into an interactive
manipulator robot [6]. Fuse will have access to representations
in the robot’s visual system and also its planning and memory
systems, leading to an enriched encoding of context to help
guide speech processing. Second, we plan to extend Fuse
to work with non-visual context cues such as geographical
position and time of day in order to build context-aware
assistive communication devices [29].
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