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Abstract

We introduce a face detector for wearable com-
puters that exploits constraints in face scale and ori-
entation imposed by the proximity of participants in
near social interactions. Using this method we describe
a wearable system that perceives “social engagement,”
i.e., when the wearer begins to interact with other in-
dividuals.

Our experimental system proved > 90% accurate
when tested on wearable video data captured at a pro-
fessional conference. QOver 300 individuals were cap-
tured during social engagement, and the data was sepa-
rated into independent training and test sets. A metric
for balancing the performance of face detection, local-
ization, and recognition in the context of a wearable
interface is discussed.

Recognizing social engagement with a user’s wear-
able computer provides context data that can be useful
in determining when the user is interruptible. In addi-
tion, social engagement detection may be incorporated
into a user interface to improve the quality of mobile
face recognition software. For example, the user may
cue the face recognition system in a socially graceful
way by turning slightly away and then toward a speaker
when conditions for recognition are favorable.

1 Introduction

In casual social interaction, it is easy to forget the
names and identities of those we meet. The conse-
quences can range from the need to be reintroduced
to the “opportunity cost” of a missed business con-
tact. At organized social gatherings, such as profes-
sional conferences, name tags are used to assist atten-
dees’ memories. Recently, electronic name tags have
been used to transfer, index, and remember contact
information for attendees [3]. For everyday situations
where name tags are inappropriate, a face recognition
system may provide face-name associations and aid in
recollection of prior interactions with a conversational

partner.

One way to implement such a system would be
to place cameras in every environment in which a user
may meet new acquaintances. This method is unten-
able from a cost perspective. Since wearables are self-
contained, a face recognizer implemented on a wear-
able could function in environments devoid of special-
ized infrastructure. In this manner, the face recogni-
tion resource would always be available to the wearer.
Intelligent interface agents implemented on top of this
system can then provide the face-name associations
suggested earlier [32, 20, 6]. Rhodes accurately labels
such systems just-in-time information retrieval agents
[24].

Effective wearable interfaces apply what they un-
derstand about the wearer’s context (directly or indi-
rectly provided by the wearer) to some problem to be
solved for the user [31]. These systems must balance
computation against human burden. For example, if
the wearable computer interrupts its wearer during a
social interaction (e.g. to alert him to a wireless tele-
phone call), the conversation may be disrupted by the
intrusion. Detection of social engagement allows for
blocking or delaying interruptions appropriately dur-
ing a conversation.

Hall [8] defines “near social interaction” to be
from four to seven feet of separation between the par-
ticipants. To segment casual social interaction visu-
ally, we identify social engagement — the first stage of
social intercourse where one or both parties exchange
a desire to communicate through verbal or non-verbal
behaviors — as the start of conversation. Proxemics,
non-verbal communication, and other social interplay
are outside the scope of this paper, but we refer the
reader to Hall [8] and Harrison [9] for such topics.
To identify social engagement visually from the first-
person perspective, we wish to use features endemic
to engagement. For example, eye fixation, patterns of
change in head orientation, social conversational dis-
tance, and change in visual spatial content may be rel-
evant [30] [23]. We are as yet uncertain which features



are required for recognition, so we induce a set of be-
haviors that assist the computer with face recognition.
Specifically, the wearer aligns x’s on a head-up display
with the eyes of the subject to be recognized. As we
learn more about the applicability of our method from
our sample data set, we will extend our recognition
algorithms to include non-induced behaviors.

When a conversant is socially engaged with the
user, a weak constraint may be exploited for face
recognition and detection. Specifically, search over
scale and orientation may be limited to that typi-
cal of the near social interaction distances. Thus, a
method for determining these types of social inter-
actions may be profitable. Example works on visual
modeling of human interaction include hidden Markov
models (HMMs), Coupled HMMs(CHMMSs)[19], and
stochastic grammars [12]. These works were primarily
conducted from the third-person perspective of surveil-
lance but serve as a model for our work with the first-
person. HMMs with stochastic grammars were used
by Moore [17] to model complex actions. Furthermore,
HMDMSs have been successful in recognition of American
Sign Language gestures [33] and location recovery[34].

A similar problem exists in ethologically inspired
robotics. In Breazeal et al.[1, 4], the authors code high
level knowledge of social behavior into robots as part
of a four level hybrid architecture. The knowledge of
social constraints enhances situational awareness. Pre-
attentive, visually-attentive, and post-attentive pro-
cessing of video obtained from the robot’s ’eyes’ are
applied in succesion, each constraining or refining the
successor to a smaller, more salient, subset of visual
information.

Mann [14] and Starner [32] describe manual align-
ment of target faces with calibration marks overlaid by
a head mount display. Users must explicitly request
recognition after aligning the face. A likelihood sorted
list of candidates is presented to the wearer for human
selection. Neither paper quantifies the performance of
either human or computer at detection or recognition.
If detection can be done automatically, there would be
less load on the human. Conversely, if the processor or
algorithm for detection are weak, hand-aligned recog-
nition may be desirable. In Brzezowski, Dunn, and
Vetter [5], a mobile system for military and police use
in identifying criminals is presented. This system was
a combination of commercial face recognition software
and mobile-wireless variable bandwidth infrastructure.
Its limitations are numerous, but it notably failed in
varied lighting conditions common to mobile usage.
Finally, in Tordanoglou et al. [11], a method for wear-
able face recognition is described but was not proto-
typed or tested on data acquired from a wearable com-

puter. While the system does not address detection,
it discusses algorithm performance under bandwidth
limitations, a problem central to mobile computing.

While there are many face detection, localiza-
tion, and recognition algorithms in the literature that
were considered as potential solutions to our prob-
lem, our task is to recognize social engagement in con-
text of human behavior and the environment. Face
presence may be one of the most important features,
but it is not the only feature useful for segmenting
engagement. Generally, face detection consists of a
search across scale and within some tolerance of in-
plane or out-of plane rotations [7, 25, 29, 35, 13].
Prior work with HMMs on face detection by Nefian
[18] modeled both face recognition and face detec-
tion using embedded HMMs. This work demonstrates
the feasibility of HMMSs for face recognition and de-
tection. However,search at scale was performed and
no background or noise models were used. Unfortu-
nately, classic detection is usually under-constrained
and over-optimistic about background content. In ex-
amination of 10 standard face databases (> 19,000
images)[21, 2, 29, 28, 25, 16, 10, 35, 27, 15, 22], we
found that background contents had little variation.
By comparison, scenes obtained from a body-worn
camera in everyday life contained highly varied scene
backgrounds. Furthermore, current general purpose
detectors are very compute-intensive due to search-
ing at scale. Though a low false positive rate is rel-
atively important for interface reasons, the computa-
tional price without specialized hardware is generally
unacceptable. Expensive algorithms should only be
computed if there is a reasonable chance a face ex-
ists or if fine grain localization is required. We detail
comparison metrics below for deciding which methods
better satisfy real-time interface requirements.

2 Engagement Dataset

Many face detection and face recognition datasets are
constructed with the goal of understanding how to sep-
arate faces from their background and how to separate
identity across face images respectively. Most face
databases are collected under controlled camera pa-
rameters, lighting, and orientation. It is not clear that
results derived from these previous experiments will be
applicable across the environments where everyday hu-
man interaction occurs. Therefore, we collected video
data from a wearable camera at an academic confer-
ence, a setting representative of social interaction of
the wearer and new acquaintances. The capture en-
vironment was highly unconstrained and ranged from
direct sunlight to darkened conference hall. Approxi-



Figure 1: Representative data set

Figure 2: Marks for user alignment and face capture apparatus



mately 300 subjects were captured one or more times
over 10 hours of captured video. The images in Figure
1 are locations in the video annotated by the wearer
to be faces.

We assembled a prototype wearable camera sys-
tem to acquire necessary preliminary test data. (see
Figure 2)The apparatus consists of: a color camera, an
infrared(IR) sensitive black and white camera, a low-
power IR illuminator, two digital video(DV) recorder
decks, one video character generator, one audio tone
generator, and four lithium ion cam-corder batter-
ies. The DV deck, character generator, tone gener-
ator, camera DSP unit, and battery/power system are
housed in a camera vest. The cameras, head mount
display, and infrared illuminator are mounted on a
plastic helmet for increased stability and precision of
capture. Using infrared sensitive cameras with in-
frared emitting illuminators allows for night time cap-
ture or semi-covert operation. Unfortunately, data
captured at the conference did not make use of the
illuminator as sunlight and incandesant lighting pro-
vided more than enough IR radiation for capture.

The output of one camera is split with a low-
power video distribution amplifier and displayed in one
eye of the head mount display. The signal is annotated
with two 'x’ characters spaced and centered horizon-
tally then placed one third of the way from the top
of the video frames (Figure 2). The other copy of the
signal is saved to DV tape. To capture face data, the
wearer of the vest approaches a subject and aligns the
person’s eyes with the two 'x’ characters. The 'x’ char-
acters represent known locations for a subject’s eyes
to appear in the video feed. The marks and lens fo-
cus are ideally calibrated to be appropriate for footage
taken at normal conversational distances from the sub-
ject. Omnce the marks are aligned, the wearer pushes
a button that injects an easily detected tone into the
DV deck’s audio channel for later recovery. The au-
dio tones serve as ground-truth markers for training
purposes.

3 Method and Results

The video data was automatically extracted into 2
second partitions and divided into two classes using
frames annotated by the wearer. The two classes were
‘engagement’ and ’other’. Due to the fact that the
wearer annotation was highly incomplete, we had to
filter the remaining facial interactions that were mis-
classified. This editing was also used to protect the
privacy of non-participants in the experiment. As may
be expected, the number of engagement gestures per
hour of interaction was much smaller than the num-

ber of examples in the garbage class. Finally, the time
window was selected based on our prior belief that en-
gagement happens in a time window of approximately
half a second to two seconds.

Since the wearer lined up two x’s with the eyes of
a viewed subject, the presence of a face could safely be
guaranteed to be framed by a 360x360 subregion of the
720x480 DV frame at the annotated locations in the
video. Faces present at engagement were large with
respect to the subregion. We first convert to grey-
scale, deinterlace, and correct non-squareness of the
image pixels in the subregion. We then used Gaus-
sian sub-sampling to reduce the size of the images
to 22x22 pixels. Therefore, each feature vector con-
sists of 484 elements. We model the face class by a
3 state left-right HMM as shown in Figure 3. The
other class was much more complex to model and re-
quired a 6 state ergodic model to capture the interplay
of garbage types of scenes as shown in Figure 4. We
plot the mean values of the state output probabilities.
The presence of a face seems important for acceptance
by the engagement model. The first state contains
a rough face-like blob and is followed by a confused
state that likely represents the alignment portion of
our gesture. The final state is clearly face-like, with
much sharper features than the first state and would
be consistent with conversational engagement. Look-
ing at the other class model, we see images that look
like horizons and very dark or light scenes. The com-
plexity of the model allowed wider variations in scene
without loss in accuracy. It is clear that different envi-
ronments and viewpoints would derive different model
structures. Thus, user and location specific models can
likely be derived or adapted to improve the general de-
tection strategy. For single user wearables, only learn-
ing location-dependent models may be sufficient. For
a reference on visual modeling of location see Rungsar-
ityotin [26].

Accuracy results are shown in Table 1. Confusion
matrices are given in Table 2 and Table 3.

Table 1: Accuracy of engagement detection

’ experiment | training set | independent test |

[ 22x22 video stream [ 89.71% | 90.10%




Figure 3: Engagement class
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Figure 4: Other class

Table 2: Confusion matrix for engagement detection
on training data

| train confusion, N=843 | engagement | other ‘
engagement 82.1%(128) | 17.9%(28)
other 8.6%(63) | 91.3%(665)

4 Evaluation Metrics for Sepa-
rating Face Detection, Local-
ization, and Recognition

In wearable computing, battery life and processor
speed are at a premium, resulting in a very specific
evaluation criteria for our system. How effective is
leveraging detection of social engagement as compared
to continuously running face recognition? If we were
to construct a wearable face recognition system using
our engagement detector, we would combine the social

Table 3: Confusion matrix for engagement detection
on independent test data

| test confusion, N=411 | engagement | other |
engagement 83.3%(50) | 16.7%(10)
other 8.7%(30) | 91.3%(314)

engagement detector with a scale-tuned localizer and a
face recognizer. The cost of the social engagement de-
tector must be sufficiently small to allow for the larger
costs of localization and recognition. This is described
by the inequality

z—Ry*xa> Ry*b

where z := 1 is the total resources for detec-
tion,localization, and recognition, a is the fixed cost
of running engagement detection once in sec/frames,
b is the fixed cost of running localization, and recog-
nition methods once in sec/frames, R, and Ry are the



rate at which we can supply the respective detectors
with frames in frames/sec. However, R, has a maxi-
mum value determined by either the fraction of false
positives Uy, multiplied by the maximum input frame
rate or the rate at which the user wants to be advised
of the identity of a conversant R,;. Thus, the above
equation can be re-written

Ry % b > mazx{R, * Uyp, Ry} % b

Note that fixating the camera on a true face could
cause up to R, frames per second to be delivered to
the face recognizer. However, we assume that the user
does not want to be updated this quickly or repeatedly
(i.e. Ry << R,). We also assume that our rate of
false positives will almost always be greater than the
rate the user wants to be informed, leaving us with

1-Ry*xa>Ry*Usppb

For comparison purposes, we will assume that the av-
erage time per frame of processing for the localization
and recognition process can be represented by some
multiple of the average detection time (i.e. b = c¢x*a).
Thus, for a given multiplier ¢, we can determine the
maximum rate of false positives allowable by the face
detection process.
1 1

Urp < Ryxaxc ¢
Note that if ¢ < 1, then the localization and recogni-
tion process runs faster than the face detection pro-
cess. This situation would imply that performing face
detection separately from face localization and recog-
nition would not save processing time (i.e. localization
and recognition should run continually - again, if real-
time face recognition is the primary goal).

Given a false positive rate Uyp, we can solve the
equation to determine the maximum allowable time for
the localization and recognition process as compared
to the detection process.

1 1
c< —m8 — — ——
T RoxaxUp, Upp

Thus, we have a set of heuristics for determining when
the separation of face detection and face localization
and recognition is profitable.

5 Discussion and Applications

Applying the metric from the previous section to our

experimental results, we let U, = .13, R, = 30,

a = % and solving for ¢ we get ¢ < 7.69. Thus

any recognition method used may be up to 7.69 times
slower than the engagement detection method and will
have a limiting frame rate of about four frames per
second. Given that our detection algorithm runs at
30fps, and our knowledge that principal component
analysis based face recognition and alignment can run
faster than roughly four times a second, we feel that
engagement detection can be a successful foundation
for wearable face recognition. Post-filtering outputs
of detection may help eliminate false positives before
recognition [7]. Due to the face-like appearance of the
final state of the HMM, it is likely that the output of
our method could provide a reasonable first estimate
of location to fine grain localization.

We are beginning to model other modalities of en-
gagement behavior. Engagement detection failure in
one modality may be discounted by addition of further
sensors on the user. For example, Selker [30] discusses
an eye fixation detector; eye fixation may help indicate
social engagement. Two parties meeting for the first
time will usually look to see whom they are meeting.
Sound may provide another modality with which to de-
tect social engagement. For instance, personal utter-
ances like “hello, my name is ...” are common during
social engagement. A simple range sensor using sonar
or pulsed IR could be mounted on the camera to deter-
mine presence of objects within near social interaction
distances. This could be used as a trigger for activating
body-worn cameras. Finally, we have constructed, but
not yet integrated, a vision-based walking/not-walking
classifier. Detection of head stillness and other inter-
est indicators will likely reduce false positives in our
system[23].

We are considering several applications for this
technology. Face recognition on a wearable platform
aids and protects military and law enforcement offi-
cers in the field by providing personnel the ability to
conduct comparisons of viewed subjects to records of
wanted criminals. Such a tool would ideally augment
wanted posters and visual comparison, reduce human
error, reduce time to capture, and reduce legal costs.
To directly aid border guards, sentries, and patrol of-
ficers, such a system should be configured to function
in daylight or at night. Medical benefit can be re-
alized by people that suffer from prosopagnosia (face
blindness) by restoring their ability to learn and rec-
ognize faces directly. More generally, such a system
may be useful to anyone who needs to associate large
numbers of names with faces. For example, salesper-
sons and politicians could suddenly recall a person’s
name and any previous salient interactions. As a final
application, we are considering the creation of an at-
tention manager to protect the wearer from stimulus



overload. Detecting conversational context is key to
handling distractors, such as cellular phone calls, in
an intelligent fashion.

6 Conclusion

From examining publicly available face databases, face
detection and recognition on a wearable computer ap-
pear significantly different from off-the-body scenarios.
Large variations in lighting, scene, and camera posi-
tion occur in everyday, human-centered situations. In
addition, traditional systems do not exploit constraints
in the user’s environment that improve the efficiency
and accuracy of detection. We described a platform
built to capture data from a wearable user’s perspec-
tive and detailed a method for efficient engagement
detection on a wearable computer. Furthermore, we
present a metric to determine when separating face
recognition into detection and recognition components
is profitable from an architectural standpoint. We
are currently constructing a prototype face recognition
wearable that detects engagement via the described
method in order to validate our initial experimental
results derived from wearable data.

References

[1] B. Adams, C. Breazeal, R. Brooks, and B. Scassel-
lati. Humanoid robots: A new kind of tool. IEEE
Intelligent Systems, August 2000. to appear.

[2] Y. Adini, Y. Moses, and S. Ullman. Face recog-
nition: The problem of compensating for changes
in illumination direction. Pattern Analysis and
Machine Intelligence, 19(7):721-732, July 1997.

[3] R. Borovoy, M. McDonald, F. Martin, and
M. Resnick. Things that blink: A computation-
ally augmented name tag. IBM Systems Journal,
35(3), 1996.

[4] C. Breazeal, A. Edsinger, P. Fitzpatrick, B. Scas-
sellati, and P. Varachavskaia. Social constraints
on animate vision. IEEFE Intelligent Systems, Au-
gust 2000. to appear.

[5] S. Brzezowski, C. M. Dunn, and M. Vetter. Inte-
grated portable system for suspect identification
and tracking. In A. T. DePersia, S. Yeager, and
S. Ortiz, editors, SPIE:Surveillance and Assess-
ment Technologies for Law Enforcement, 1996.

[6] J. Farringdon and V. Oni. Visually augmented
memory. In Fourth International Symposium on
Wearable Computers, Atlanta, GA, 2000. IEEE.

[7] R. Feraud, O. J. Bernier, J.-E. Viallet, and
M. Collobert. A fast and accurate face detector
based on neural networks. Pattern Analysis and
Machine Intelligence, 23(1):42-53, January 2001.

[8] E. T.Hall. The Silent Language. Doubleday, 1963.

[9] B. L. Harrison, H. Ishii, and M. Chignell. An em-
pirical study on orientation of shared workspaces
and interpersonal spaces in video-mediated col-
laboration. Technical Report OTP-94-2; Uni-
versity of Toronto, Ontario Telepresence Project,
1994.

[10] D. Hond and L. Spacek. Distinctive descriptions
for face processing. In 8th British Machine Vision
Conference, pages 320-329, Colchester, England,
September 1997.

[11] C. Tordanoglou, K. Jomsson, J. Kittler, and
J. Matas. Wearable face recognition aid. In In-
terntional Conference on Acoustics, Speech, and
Signal Processing. IEEE, 2000.

[12] Y. Ivanov, C. Stauffer, A. Bobick, and E. Grim-
son. Video surveillance of interactions. In CVPR
Workshop on Visual Surveillance, Fort Collins,
CO, November 1999. IEEE.

[13] T. K. Leung, M. C. Burl, and P. Perona. Find-
ing faces in cluttered scenes using random la-
belled graph matching. In 5th Inter. Conference
on Computer Vision, 1995.

[14] S. Mann. Wearable, tetherless computer—
mediated reality: WearCam as a wearable face—
recognizer, and other applications for the dis-
abled. TR 361, MIT Media Lab, Cambridge, MA,
February 1996.

[15] E. Marszalec, B. Martinkauppi, M. Soriano, and
M. Pietikinen. A physics-based face database for
color research. FElectronic Imaging, 9(1):32-38,
2000.

[16] A. M. Martinez and R. Benavente. The ar face
database. TR 24, CVC, June 1998.

[17] D. J. Moore. Vision-based recognition of actions
using context. PhD thesis, Georgia Institute of
Technology, Atlanta, GA, 2000.



[18]

[19]

[20]

A. Nefian. A hidden Markov model-based ap-
proach for face detection and recognition. PhD
thesis, Georgia Institute of Technology, Atlanta,
GA, August 1999.

N. Oliver, B. Rosario, and A. Pentland. Statistical
modeling of human interactions. In CVPR Work-

shop on Interpretation of Visual Motion, pages
39-46, Santa Barbara, CA, 1998. IEEE.

A. Pentland. Looking at people: sensing for ubig-
uitous and wearable computing. Pattern Analy-
sis and Machine Intelliegence, 22(1):107-119, Jan
2000.

A. Pentland, T. Starner, N. Etcoff, A. Masoiu,
0. Oliyide, and M. Turk. Experiments with eigen-
faces. In Looking at people workshop: IJCAI9S,
Chamberry, France, August 1993.

Psychological image collection at stirling (PICS).
available at:http://pics.psych.stir.ac.uk/.

J. Reeves. The face of interest. Motivation and
Emotion, 17(4), 1993.

B. Rhodes and P. Maes. Just-in-time information
retrieval agents. IBM Systems Journal special is-
sue on the MIT Media Laboratory, 39(3-4):685—
704, 2000.

H. A. Rowley, S. Baluja, and T. Kanade. Neu-
ral network-based face detection. IEEE Trans-
actions on Pattern Analysis and Machine Intelli-
gence, 20(1), January 1998.

W. Rungsarityotin and T. Starner. Finding lo-
cation using omnidirectional video on a wearable
computing platform. In International Symposium
on Wearable Computing, Atlanta, GA, October
2000. IEEE.

F. Samaria and A. Harter. Parameterisation
of a stochastic model for human face identifica-
tion. In 2nd IEEE Workshop on Applications of
Computer Vision, Sarasota FL., December 1994.
IEEE.

H. Schneiderman and T. Kanade. Probabilistic
modeling of local appearance and spatial relation-
ships for object recognition. In Computer Vision
and Pattern Recognition, pages 45-51. IEEE, July
1998.

H. Schneiderman and T. Kanade. A statistical
model for 3d object detection applied to faces and
cars. In Computer Vision and Pattern Recogni-
tion. IEEE, June 2000.

[30]

31]

[32]

[34]

T. Selker, A. Lockerd, and J. Martinez. Eye-r,
a glasses-mounted eye motion detection interface.
In to appear CHI2001. ACM, 2001.

B. A. Singletary and T. Starner. Symbiotic inter-
faces for wearable face recognition. In HCII2001
Workshop On Wearable Computing, New Or-
leans, LA, August 2001. Lawrence Erlbaum. to
appear.

T. Starner, S. Mann, B. Rhodes, J. Levine,
J. Healey, D. Kirsch, R. W. Picard, and A. Pent-
land. Augmented reality through wearable com-
puting. Presence special issue on Augmented Re-
ality, 1997.

T. Starner and A. Pentland. Real-time Ameri-
can sign language recognition using desktop and
wearable computer based video. Pattern Analysis
and Machine Intelligence, December 1998.

T. Starner, B. Schiele, and A. Pentland. Visual
contextual awareness in wearable computing. In
International Symposium on Wearable Comput-
ing, 1998.

K. K. Sung and T. Poggio. Example-based learn-
ing for view-based human face detection. Pattern
Analysis and Machine Intelligence, 20(1):39-51,
January 1998.



