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We report on ongoing research into how to statistically 
represent the experiences of a wearable computer user for the 
purposes of day-to-day behavior prediction. We combine 
natural sensor modalities (camera, microphone, gyros) with 
techniques for automatic labeling. We have also taken the next 
required step to build robust statistical models with an 
extensive data collection experiment, the “I Sensed” series, a 
100 day data set consisting of full surround video, audio, and 
orientation. 
 
Keywords: contextual computing, peripheral sensing, 
computer vision, computer audition, wearable computing 

I. INTRODUCTION 

Is a person’s day-to-day behavior predictable? We are 
concerned with this question because it is exactly the 
question that needs to be answered if we are going to build 
agents (wearable or not) that anticipate. Agents that don’t 
anticipate can react and reconfigure based on the present [1] 
and the past, but generally don’t extrapolate into the future. 
This is a severe limitation because agents without predictive 
power cannot engage in preventive measures, “meet you 
half way”, nor engage in behavior modification. This is not 
to say that a clever engineer couldn’t herself notice a 
particular situation that is clearly indicative of some future 
state, and thus, manually program an agent to anticipate that 
future state when the situation occurs. However, definitely 
for a wearable agent and possibly others, typical situations 
span the entire complex domain of real life where it is 
unreasonable to manually design such anticipatory behavior 
into an agent. [2] 
 
There are many ways to pose the question of predictability. 
In rough terms, prediction is being able to say with some 
level of certainty that if A happens then some time in the 
future B will happen. What we haven’t specified yet is what 
domain is A and B coming from. There is a whole spectrum 
of possibilities for A and B that has to do with how detailed 
the agent’s sensory input is. Can the agent understand what 
is being spoken and understand facial expression? Or, can it 
only know that there are speech-like sounds and something 
moving? The problem with these two ends of the spectrum 
of sensor detail is that sensor detail seems to be positively 
correlated with usefulness. It is our belief and purpose of 
this work that even at the lower end of sensor detail there 
are useful artificial intelligence systems that can be built, 
especially in such complex and rich domains as a wearable 
affords.  
 

Theoretically, the question of how predictable a person’s 
day-to-day behavior is moot if we have access to a 
complete description of the state of the world, right down to 
the electron spins in the user’s fingernails. Then supposedly 
we can just apply the laws of physics and simulate into the 
future. This inane statement just implies that we will always 
have to deal with an incomplete description of the world. A 
realistic approach is to start with the coarsest description of 
the state of the world, see what can be deduced from it and 
then move to a slightly finer description. You stop when 
you have reached the limit of your sensing capabilities or 
the level of privacy invasion outweighs the benefits. 
 
In this work we will take a straightforward approach to 
answering this question of predictability. First we will 
report on an extensive data collection experiment that 
allows us to build predictive models of a person’s day-to-
day behavior. Then we will address the problem of building 
coarse descriptions of the world from these wearable 
sensors, such as cameras, microphones, and gyros. Last, we 
describe the results of prediction on these coarse 
descriptions. 

II. DATA COLLECTION 

The first phase in answering the question of human 
predictability is to accumulate a series of events and 
situations experienced by one person over an extended 
period of time. 

A. The “I Sensed” Series: 100 Days of Experiences 

The main requirement of learning predictive models from 
data is to have enough repeated trials of the experiment 
from which to estimate robust statistics. Ideally experiential 
data recorded from an individual over a number of years 
would be ideal. However, other forces such as the 
computational and storage requirements needed for huge 
data sets force us to settle for something smaller. We chose 
100 days (14.3 weeks) because, while it is a novel period 
for a data set of this sort, its size is still computationally 
tractable (approx. 500 gigabytes).  
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Figure 1: The Data Collection wearable when worn. 

The wearable was worn from mid-April to mid-July of 
2001 by the author. Refer to the last page (Figure 4) of this 
paper for actual excerpts from this data set on 4 different 
scenes: eating lunch, walking up stairs, in a conversation, 
and rollerblading. 
 
The protocol of the experiment were as follows: 

• Data collection commences each day from approx. 
10am and continues until approx. 10pm. This 
varies based on the sleeping habits of the 
experimental subject. 

• The times that the data collection system is not 
active or worn by the subject is logged and 
recorded. Such times are typically when: batteries 
fail, sleeping, showering, and working out. 

• In addition to the visual, aural, and orientation 
sensor data collected by the wearable, the subject 
is also required to keep a rough journal of his high-
level activities to within the closest half hour. 
Examples of high-level activity are: “Working in 
the office”, “Eating lunch”, “Going to meet 
Michael”, etc. while being specific about who, 
where, and why. 

• Every 2 days the wearable is “emptied” of its data, 
by uploading to a secure server. 

• Persons who normally interact with the subject on 
a day-to-day basis and have a possibility of having 
a potentially private conversation recorded are 
asked to sign a consent form and an agreement is 
made by the experimenters to not disclose the data 
in way without further consent. 

B. The Data Collection Wearable 

The sensors chosen for this data set are meant to mimic the 
human senses. They include visual (2 camera, front and 
back), auditory (1 microphone), and gyros (for 3 degrees of 
orientation: yaw, pitch and roll). These match up with the 

eyes, ears, and inner ear, while taste and smell are not 
covered because the technology is not available yet. Other 
possibilities for sensors that have no good reason for being 
excluded are temperature, humidity, accelerometers, and 
bio-sensors (e.g. heart-rate, galvanic skin response, glucose 
levels). The properties of the 3 sensor modalities are as 
follows: (see Figure 3) 
 
Audio: 16kHz, 16bits/sample (normal speech is generally 
only understandable for persons in direct conversation with 
the subject.) 
 
Front Facing Video: 320x240 pixels, 10Hz frame rate 
(faces are generally only recognizable under bright lighting 
conditions and from less than 10ft away.) 
 
Back Facing Video: 320x240 pixels, 10Hz frame rate 
(faces are generally only recognizable under bright lighting 
conditions and from less than 10ft away.) 
 
Orientation: Yaw, roll, and pitch are sampled at 60Hz. A 
zeroing switch is installed beneath the left strap which is 
meant to trigger whenever the subject puts on the wearable. 
Drift is only reasonable for periods of less than a few hours. 
 
The wearable is based on a backpack design for comfort 
and wardrobe flexibility. The visual component of the 
wearable consists of 2 USB cameras (front- and rear-facing) 
modified to be optically compatible with 200° field-of-view 
lenses (adapted from door viewers). This means that we are 
recording light from every direction in a full sphere around 
the user (but not with even sampling of course). The front-
facing camera is sewn to the front strap of the wearable and 
the rear-facing camera is contained inside the main shell-
like compartment. The microphone is attached directly 
below the front-facing camera on the strap. The orientation 
sensor (InterTrax2 from Intersensed Inc. with its magnetic 
field zeroing feature disabled) is housed inside the main 
compartment. Also in the main compartment are a PIII 
500MHz cell computer (CellComputing Inc.) with a 10GB 
HDD (enough storage for 2 days) and 4 Sony Infolithiums 
NP-F960 (operating time: ~10 hrs.). The polystyrene shell 
(see Figure 1) was designed and vacuum-formed to fit the 
components as snuggly as possible while being 
aesthetically pleasing, presenting no sharp corners for 
snagging, and allowing the person reasonable comfort while 
sitting down. 
 
Since this wearable is only meant for data collection, its 
input and display requirements are minimal. For basic 
on/off, pause, record functionality there are click buttons 
attached to the right-hand strap (easily accessible by the 
left-hand by reaching across the chest). These buttons are 
chorded for protection against accidental triggering. All 
triggering of the buttons (intentional or otherwise) is 
recorded along with the sensor data. Other than the 
administrative functions, the buttons also provide a way for 
the subject to mark salient points in the sensor data. The 
only display provided by the wearable is 2 LEDs, one for 
power and the other for recording. 
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C. The Data Journal 

Organizing, accessing, and browsing such a large amount of 
video, audio, and gyro data is a non-trivial engineering task. 
So far we have a system that allows us to fully transcribe 
the “I Sensed” series and to access it arbitrarily in a multi-
resolution and efficient manner. This ability is essential for 
learning and feature extraction techniques talked about later 
in this paper. All data (images, frames of audio, button 
presses, orientation vectors, etc.) are combined and time 
synchronized in our data journaling system to millisecond 
accuracy (see Figure 2). 

III. SCENE ANALYSIS 

The purpose of the scene analysis step is to extract the 
events that we care about predicting. This might include but 
is not limited to: 
 
Motion events {walking, turning, running, etc.} 
Location events {entering, leaving} 
People events {meeting, speech, etc.} 
 
Since we have access to visual, aural, and orientation data, 
many of these events can conceivably be detected and 
classified. We address a few in this section. 

A. Location 

“Where are you?” is one of the most basic facts about your 
state. Many basic decisions and events are conditioned on 
your location and state of your location (e.g. turning down a 
hallway, meeting someone, turning on the light). For these 
reasons it is likely to be a powerful clue for guessing what 
you will do next. 
 
In previous experiments [3] with similar but smaller 
datasets, we showed that location can be successfully 
classified (conditioned on time) by likelihood ratio tests 
with Hidden Markov Models on image histogram-like 
features (visual ambience). Furthermore, we showed that 
adding similarly coarse audio features (to capture aural 
ambience) and combining with the visual features 
sometimes gave higher or lower classification performance. 
 

 Correct Acceptance (%) Correct Rejection (%) 
Locations A+V A V A+V A V 
BorgLab 95.9 19.1 97.1 92.1 56.2 84.9 
BTLab 93.3 63.8 88.3 97.3 48.0 98.8 
Courtyard 83.1 38.2 93.0 92.2 64.9 76.6 
Elevator 63.6 52.1 62.8 99.8 58.0 98.4 
Lower Atrium 95.7 88.7 87.3 60.9 26.8 56.3 
Upper Atrium 95.0 56.3 96.0 60.7 52.3 61.4 
Office 89.9 42.6 71.1 96.0 87.3 93.5 

 
However, building classifiers for all the possible locations 
in the 100-day dataset, while possible, is not necessary until 
you need a human-readable label. For our prediction 
experiments we need an event corresponds to a location. A 
small experiment shows how we can obtain this simply by 
clustering the visual features. We clustered the visual 
features using K-Means and 20 Gaussian centroids. Then 

we tabulated the correspondence between these 20 clusters 
and the 7 locations that the data spanned. This results in the 
following table: 

 
The result is quite pleasing. There is a strong many-to-one 
mapping of clusters to locations. Of course this almost 
follows from the fact that we are able to separate these 
locations with HMMs. Each location is marked by its own 
particular dynamic of how it switches between a few simple 
modes of visual appearance. For example notice both the 
Borg Lab and the BT Lab locations share the cluster #2. 
However, the BT Lab switches between clusters #2 and #3 
while the Borg Lab only exhibits a single mode, cluster #2. 
This is what allows us to distinguish them apart, even 
though sometimes the two locations are visually similar. 
The point of this mini-experiment is to show that if we 
build a predictor in terms of these visual clusters, it is 
functionally equivalent to using the locations themselves. 
Back Regions Front Regions

 
So, we take the front and back views from the “I Sensed” 
data set and divide them into 5 regions each (see figure ?).  
Full covariance Gaussians are estimated from the 
luminance and chrominance (HSV) color values in each 
region. This yields 9 parameters (3 means, 6 covariances) 
per region. This set of features is then clustered into 32 
clusters using K-Means. The front view clusters are shown 
here, sorted according to the percentage of the time that 
they are active. 
 

6.3% 6.1% 5.8% 5.4% 5.0% 4.9% 4.4% 4.0%

4.0% 3.8% 3.6% 3.4% 3.3% 3.3% 3.0% 2.7%

2.7% 2.6% 2.6% 2.5% 2.5% 2.2% 2.2% 2.1%

2.0% 2.0% 1.6% 1.6% 1.3% 1.3% 1.3% 0.4%

 



 

 4 

 
Visually there is a clear correspondence between indoor and 
outdoor, night and day scenes. Other correspondences, such 
as with exact locations, are more difficult to see without 
calculating the same features for each location and 
comparing. 

B. Speech Events 

To extract speech events from the recorded audio we used a 
rule-based search system based on the spectrogram. After 
estimating a power spectrogram from the audio signal, we 
high-pass filter each frequency bank to remove any biases 
caused by slowly changing (> 1 minute) sound sources in 
the environment (e.g. fan noise, wind, hums, etc.). Spectral 
peaks are then found and tracked in the spectrogram. 
Finally, these spectral tracks are grouped according their 
harmonic relationship with one another (related to the 
harmonic sieve pitch estimator [4]). Thus if two tracks 
share the same fundamental frequency, they are grouped 
together as being caused by the same pitched source. Tracks 
that are not grouped are thrown away as spurious noise. The 
remaining groups are further filtered, removing the 
harmonic sounds that don’t fall in the typical fundamental 
frequency range for speech (80-300 Hz). 
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C. Motion Events 

Motion was estimated with a combination of information 
from the electronic gyros and regularized optical flow from 
the visual field. The optical flow estimation was necessary 
because the gyros were found to precess excessively at 
times and because we wished to estimate the forward 
motion. 

Spherical Motion Field Tunnel Motion Field
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The optical flow in the forward view was calculated using 
the Lucas-Kanade point tracker [5]. This yields an N-point 
motion field, which we regularize with two different 
geometries: spherical and cylindrical (or tunnel). A sphere 
centered on the optical center of the ultra wide-angle lens 
was used to estimate the left/right and up/down motion of 
the camera. A tunnel with its vanishing point at the optical 
center of the lens was used to estimate the forward motion. 
 

Let { } 1...
( , , , )i i i i i N
x y x y

=
∆ ∆  be the points and their 

displacements received from the Lucas-Kanade tracker with 
a particular pair of consecutive video frames. We project 
these displacements on to the constrained motion 
geometries: 
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Quantities are defined according to the figure on the right. 

 
The final motion deltas are estimated from these projected 
displacements by iteratively minimizing a robust error norm 
(truncated least-squares). 
 
The motion deltas are too noisy for dead reckoning, but 
they are suitable for input into a classifier that outputs 
discrete motion labels: {left, right, forward, still}. Thus we 
trained a simple HMM classifier, one HMM for each of the 
4 classes, and used Viterbi to provide a decoding of each 
frame into one of {left, right, forward, still}. 
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IV. PREDICTION 

Now our prediction task can be reduced to prediction on a 
sequence of discrete symbols. The extensive research from 
text prediction is therefore applicable here. The most 
popular models in text prediction have simply been the N-
gram [6] models typically used in speech-to-text systems 
and language identification systems. These N-gram models 
are Nth order Markov processes where the state space 
corresponds to the symbol alphabet. These N-gram models 
can be efficiently represented by trees called prediction 
suffix (or prefix) trees [7]. These trees are memory- and 
access-efficient data structures for the conditional 

probability table for 1( | ,..., )t t t NP s s s− −  where ts  is the 

symbol at time t. They are particularly efficient when the 
conditional probability table is sparse (i.e. only a small 

subset of all possible subsequences, 1( ,..., )t t Ns s− − , have 

non-zero counts) which is usually the case for high-order 
Markov models. This efficiency directly translates into us 
being able to estimate and use higher and higher order 
Markov models.  

a b c 

aa ab 

aba abc 

36 

30 

17 13 
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Prefix Tree Representation

 
 
The first set of experiments that we completed use these 
prediction prefix trees to evaluate our ability to predict the 
next symbol from a history of symbols, separately in each 
event modality. We chose 10 consecutive days from the “I 
Sensed” data set, 9 days for training, 1 day for testing. In 
order to fairly evaluate the prediction results we further 
divided the prediction error rate (PE) into two other error 
rates: transition prediction error rate (TPE) and non-
transition prediction error rate (NTPE). The TPE rate only 
counts errors when the symbol changes from one time step 
to the next (i.e. on transitions to other symbols). The NTPE 
rate only counts errors when the symbol is not changing 
from one time step to the next (i.e. on self-transitions). It 
was necessary to further specify the prediction error in 
terms of these rates because it is very common to get 
deceptively good PE rate but do very poorly on either, but 
not both, TPE or NTPE. For example, a sequence with lots 
of repeated symbols in a row could have a low NTPE but 
high TPE, together yielding a low PE. The relationship 
between the 3 rates is: 

 

# of # of non-

transitions transitions

Length of Sequence

TPE NTPE

PE

   
+   

   =  

 
The following three charts give the error rates of prediction 
using prediction prefix trees for the visual, motion, and 
speech symbols/events. While all PE rates are below 
chance, the rates are not very good. The error rates 
monotonically decrease with increasing Markov order, as 
expected, however the error rate bottoms out very quickly. 
Overall it seems the error rate is quite independent of 
Markov order, which is clearly indicative of a problem. A 
possible cause for this problem suggests itself when we 
look at the prediction results for the 10 days when using the 
entire 10 days for both training and testing. The problem 
lies in the fact that our estimation method (frequency 
counts) is too sensitive to noise and thus doesn’t generalize 
very well. This problem becomes more serious at the higher 
orders, which could explain the lack of error reduction with 
the higher order Markov models. 
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So the next natural step is to smooth or regularize our prefix 
trees. In order to do this, we need notion of distance 

between the subsequences, 1( ,..., )t t Ns s− − . This is because 

counts for one subsequence need to be distributed according 
to some kernel (e.g. Gaussian) amongst nearby sequences. 
This represents the uncertainty in the subsequence that was 
observed. These results are forthcoming. 
  

V. CONCLUSIONS 

Improving the Predictions 
Compressing these trees allows even higher orders. Work 
on compressing these trees includes [7] who prunes 
branches that do not yield additional predictive power 
(variable order Markov model), and any of the clustering 
techniques for compressing the space of the subsequences 

over 1( ,..., )t t Ns s− − . 

 

A promising approach inspired by the Information 
Bottleneck method [8] is to use the prediction that a 
particular subsequence yields as a means of defining a 

distance amongst 1( ,..., )t t Ns s− − . This means that if two 

subsequences yield similar predictions (or more exactly 
similar probability distributions over the next symbol) then 
the distance between them is small. We can make this 
explicit by defining the following distance measure: 

 { }1 2 1 2( , ) ( | ) || ( | )t tD S S KL P s S P s S=  

where KL is the KL-divergence measure between two 

probability distributions, and, 1S  and 2S  are two 

subsequences from 1( ,..., )t t Ns s− − . Clustering with this 

distance measure means that clusters will be chosen that try 
to preserve the predictions of the original uncompressed 
tree. We can then acccurately represent these clusters with  
time-inhomogeneous Markov chains (i.e. time-dependent 
transition tables) that then allow us to do prediction. These 
results are forthcoming. 
 
This same type of clustering can be used to compress the 
entire sequence into a shorter sequence or coarser 
representation. Extracting another prediction prefix tree on 
this coarser layer and using it to predict the finer layer 
yields a multi-resolution or hierarchical predictor. 
Continuing this to coarser and coarser layers can 
theoretically increase the Markov order of our predictor 
without the explosion in state-space size. These results are 
forthcoming. 
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Day  1     2     3     4     5     6     7     8     9    10    11    12    13    14    15    16    17    18    19    20

10 am 11 am 12 pm 1 pm 2 pm 3 pm 4 pm 5 pm 6 pm 7 pm 8 pm  

Figure 2: The Data Journal System: provides a multiresolution representation of the time-synchronized sensor data. 
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Figure 3: The Data Collection Wearable Schematic  
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Figure 4: Some excerpts from the "I Sensed" series

 


